有效的缩放和灵活的任务接口使大型语言模型能够在许多任务中表现出色。帕利(Pali)根据视觉和文本输入生成文本,并使用该界面以许多语言执行许多视觉,语言和多模式任务。为了训练帕利,我们利用了大型的编码器语言模型和视觉变压器(VITS)。这使我们能够利用其现有能力,并利用培训它们的大量成本。我们发现,视觉和语言组成部分的联合缩放很重要。由于现有的语言变压器比其视觉对应物要大得多,因此我们训练迄今为止最大的VIT(VIT-E),以量化甚至大容量视觉模型的好处。为了训练Pali,我们基于一个新的图像文本训练集,其中包含10B图像和文本,以100多种语言来创建大型的多语言组合。帕利(Pali)在多个视觉和语言任务(例如字幕,视觉问题,索方式,场景文本理解)中实现了最新的,同时保留了简单,模块化和可扩展的设计。
translated by 谷歌翻译
在许多图像引导的临床方法中,医学图像分割是一个基本和关键的步骤。基于深度学习的细分方法的最新成功通常取决于大量标记的数据,这特别困难且昂贵,尤其是在医学成像领域中,只有专家才能提供可靠和准确的注释。半监督学习已成为一种吸引人的策略,并广泛应用于医学图像分割任务,以训练注释有限的深层模型。在本文中,我们对最近提议的半监督学习方法进行了全面综述,并总结了技术新颖性和经验结果。此外,我们分析和讨论现有方法的局限性和几个未解决的问题。我们希望这篇评论可以激发研究界探索解决这一挑战的解决方案,并进一步促进医学图像细分领域的发展。
translated by 谷歌翻译
Context-aware decision support in the operating room can foster surgical safety and efficiency by leveraging real-time feedback from surgical workflow analysis. Most existing works recognize surgical activities at a coarse-grained level, such as phases, steps or events, leaving out fine-grained interaction details about the surgical activity; yet those are needed for more helpful AI assistance in the operating room. Recognizing surgical actions as triplets of <instrument, verb, target> combination delivers comprehensive details about the activities taking place in surgical videos. This paper presents CholecTriplet2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos. The challenge granted private access to the large-scale CholecT50 dataset, which is annotated with action triplet information. In this paper, we present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge. A total of 4 baseline methods from the challenge organizers and 19 new deep learning algorithms by competing teams are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%. This study also analyzes the significance of the results obtained by the presented approaches, performs a thorough methodological comparison between them, in-depth result analysis, and proposes a novel ensemble method for enhanced recognition. Our analysis shows that surgical workflow analysis is not yet solved, and also highlights interesting directions for future research on fine-grained surgical activity recognition which is of utmost importance for the development of AI in surgery.
translated by 谷歌翻译
我们为AI驱动数据库提供了一个SYSML框架。使用Baihe,可能会改装现有的关系数据库系统以使用学习组件进行查询优化或其他常见任务,例如例如,学习索引结构。为确保Baihe的实用性和现实世界适用性,其高级架构基于以下要求:与核心系统的分离,最小的第三方依赖,鲁棒性,稳定性和容错,以及稳定性和可配置性。基于高级架构,我们将描述Baihe的具体实现PostgreSQL,并为学习查询优化器提供了实例使用情况。为了服务于从业者,以及DB和AI4DB社区的研究人员将在开源许可下发布PostgreSQL的Baihe。
translated by 谷歌翻译
如今,在人员重新识别(Reid)任务的真实数据面临隐私问题,例如,禁止DataSet Dukemtmc-Reid。因此,收集Reid任务的真实数据变得更难。同时,标签的劳动力成本仍然很高,进一步阻碍了Reid研究的发展。因此,许多方法转向为REID算法生成合成图像作为替代方而不是真实图像。然而,合成和真实图像之间存在不可避免的领域差距。在以前的方法中,生成过程基于虚拟场景,并且无法根据不同的目标实际场景自动更改其合成训练数据。为了处理这个问题,我们提出了一种新颖的目标感知一代管道,以产生称为Tagerson的合成人物图像。具体地,它涉及参数化渲染方法,其中参数是可控的,并且可以根据目标场景调整。在Tagperson中,我们从目标场景中提取信息,并使用它们来控制我们的参数化渲染过程以生成目标感知的合成图像,这将使目标域中的实图像保持较小的间隙。在我们的实验中,我们的目标感知的合成图像可以实现比MSMT17上的广义合成图像更高的性能,即秩1精度的47.5%与40.9%。我们将发布此工具包\脚注{\ noindent代码可用于\ href {https://github.com/tagperson/tagperson-blender} {https://github.com/tagperson/tagperson -brender}}为Reid社区以任何所需味道产生合成图像。
translated by 谷歌翻译
基数估计(Cardest)是查询优化器的中央组件,在生成DBMS中的高质量查询计划方面发挥着重要作用。使用传统和ML增强的方法,在过去几十年中,在过去几十年中已经广泛研究了Cardest问题。虽然,Cardest中最困难的问题,即如何在多个表上估算连接查询大小,尚未得到广泛解决。目前的方法要么回复独立假设,要么用沉重的负担应用技术,其性能仍然远非令人满意。更糟糕的是,现有的卡最多的卡片通常旨在优化一个目标,即推理速度或估计准确性,这不能适应不同的场合。在本文中,我们提出了一个非常一般的框架,称为胶水,以解决这些挑战。其关键的想法是在不同表格中优雅地解耦并无损合并单个表卡最大的结果,以估计加入查询大小。胶水支持使用任何现有的Cardest方法获取单个表格明智的Cardest结果,可以处理任何复杂的连接模式。因此,它很容易适应具有不同性能要求的不同场景,即,OLTP具有快速估计时间或OLAP,具有高估计精度。同时,我们显示胶水可以无缝集成到计划搜索过程中,并能够支持计算不同数量的值。所有这些属性都表现出在现实世界DBMS中部署胶水的潜在进步。
translated by 谷歌翻译
基于变压器的监督预培训在重新识别(REID)中实现了良好的性能。但是,由于想象成和Reid数据集之间的域间隙,它通常需要更大的预训练数据集(例如,ImageNet-21k),以提高性能,因为变压器的强大数据拟合能力。为了解决这一挑战,这项工作可以分别从数据和模型结构的角度降低预训练和REID数据集之间的差距。我们首先调查在未标记的人物图像(Luperson DataSet)上的视觉变压器(VIV)的自我监督为了进一步降低域间隙并加速预训练,提出了灾难性的遗忘得分(CFS)来评估预训练和微调数据之间的差距。基于CFS,通过采样靠近下游REID数据的相关数据来选择一个子集,并从预训练的数据集中过滤无关数据。对于模型结构,提出了一种名为基于IBN的卷积词条(ICS)的特定于REID的模块来通过学习更不变的功能来弥合域间隙。已经进行了广泛的实验,以微调在监督学习,无监督域适应(UDA)和无监督的学习(USL)设置下进行预训练模型。我们成功将Luperson DataSet缩小为50%,没有性能下降。最后,我们在市场-1501和MSMT17上实现了最先进的表现。例如,我们的VIT-S / 16在Market1501上实现了91.3%/ 89.9%/ 89.6%用于监督/ UDA / USL REID的11501。代码和模型将发布到https://github.com/michuanhaohao/transreid -sl。
translated by 谷歌翻译
近年来,多智能体加固学习(Marl)在各种应用中呈现出令人印象深刻的性能。但是,物理限制,预算限制以及许多其他因素通常会在多代理系统(MAS)上施加\ Texit {约束},这不能由传统的Marl框架处理。具体而言,本文重点介绍受约束的Mase,其中代理工作\纺织{合作}在各种限制下最大化预期的团队平均成本下的预期团队平均返回,并开发一个名为DECOM的\ TEXTIT {约束合作MARL}框架,名为DECOM这样的苗条。特别是,DECOM将每个代理人的策略分解为两个模块,这使得代理商之间的信息共享,以实现更好的合作。此外,通过这种模块化,DREM的训练算法将原始约束优化分为奖励的无约束优化和成本的约束满足问题。然后,Decom以计算有效的方式迭代地解决这些问题,这使得DECOM高度可扩展。我们还提供了对Decom策略更新算法的融合的理论保障。最后,我们在玩具和大规模(有500个代理)环境中使用各种类型的成本验证了DECOM的有效性。
translated by 谷歌翻译
联合学习(FL)是一个带有边缘计算的充填地的新兴分布式机器学习范式,是具有在移动边缘设备上具有新颖应用的有前途的区域。在FL中,由于移动设备通过共享模型更新,因此在中央服务器的协调下基于其自身的数据进行组合培训模型,培训数据保持私密。但是,在没有数据的核心可用性的情况下,计算节点需要经常传送模型更新以获得汇聚。因此,本地计算时间与将本地模型更新一起创建本地模型更新以及从服务器发送到服务器的时间导致总时间的延迟。此外,不可靠的网络连接可以妨碍这些更新的有效通信。为了解决这些问题,我们提出了一个延迟有效的流动机制,可以减少模型融合所需的总时间(包括计算和通信延迟)和通信轮。探索各种参数对延迟的影响,我们寻求平衡无线通信(谈话)和本地计算之间的权衡(为工作)。我们与整体时间作为优化问题制定了关系,并通过广泛的模拟展示了我们方法的功效。
translated by 谷歌翻译
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
translated by 谷歌翻译